Matematicas



GEOMETRÍA ANALÍTICA





La geometría analítica estudia las figuras geométricas mediante técnicas básicas del análisis matemático y del álgebra en un determinado sistema de coordenadas. Su desarrollo histórico comienza con la geometría cartesiana, impulsada con la aparición de la geometría diferencial de Carl Friedrich Gauss y más tarde con el desarrollo de la geometría algebraica. Actualmente la geometría analítica tiene múltiples aplicaciones más allá de las matemáticas y la ingeniería, pues forma parte ahora del trabajo de administradores para la planeación de estrategias y logística en la toma de decisiones.

Las dos cuestiones fundamentales de la geometría analítica son:
Dado el lugar geométrico en un sistema de coordenadas, obtener su ecuación.
Dada la ecuación en un sistema de coordenadas, determinar la gráfica o lugar geométrico de los puntos que verifican dicha ecuación.


Lo novedoso de la geometría analítica es que representa las figuras geométricas mediante fórmulas del tipo, donde es una función u otro tipo de expresión matemática: las rectas se expresan como ecuaciones poli nómicas de grado 1 (por ejemplo,), las circunferencias y el resto de cónicas como ecuaciones poli nómicas de grado 2 (la circunferencia, la hipérbola), etc.


Localización de un punto en el plano cartesiano
Como distancia a los ejes

En un plano traza dos rectas orientadas perpendiculares entre sí (ejes) —que por convenio se trazan de manera que una de ellas sea horizontal y la otra vertical—, y cada punto del plano queda unívocamente determinado por las distancias de dicho punto a cada uno de los ejes, siempre y cuando se dé también un criterio para determinar sobre qué semiplano determinado por cada una de las rectas hay que tomar esa distancia, criterio que viene dado por un signo. Ese par de números, las coordenadas, quedará representado por un par ordenado, siendo  la distancia a uno de los ejes (por convenio será la distancia al eje horizontal) e  la distancia al otro eje (al vertical).
En la coordenada, el signo positivo (que suele omitirse) significa que la distancia se toma hacia la derecha sobre el eje horizontal (eje de las abscisas), y el signo negativo (nunca se omite) indica que la distancia se toma hacia la izquierda. Para la coordenada, el signo positivo (también se omite) indica que la distancia se toma hacia arriba sobre el eje vertical (eje de ordenadas), tomándose hacia abajo si el signo es negativo (en ningún caso se omiten los signos negativos).






ECUACIONES DE LA RECTA EN EL PLANO

Artículo principal: Función lineal.
Una recta es el lugar geométrico de todos los puntos en el plano tales que, tomados dos cualesquiera de ellos, el cálculo de la pendiente resulta siempre igual a una constante.
La ecuación general de la recta es de la forma:

Cuya pendiente es m = -A/B y cuya ordenada al origen es b = -C/B.
Una recta en el plano se representa con la Función lineal de la forma:

Como expresión general, ésta es conocida con el nombre de ecuación pendiente-ordenada al origen y podemos distinguir dos casos particulares. Si una recta no corta a uno de los ejes, será porque es paralela a él. Como los dos ejes son perpendiculares, si no corta a uno de ellos forzosamente ha de cortar al otro (siempre y cuando la función sea continua para todos los reales). Tenemos pues tres casos:

FuncionLineal04.svg
FuncionLineal06.svg
FuncionLineal07.svg






No hay comentarios:

Publicar un comentario